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Abstract. Several empirical and semi-empirical backscattering models have been proposed to offer alternative expressions
for the inversion of surface parameters from radar data, but the applicability and adequacy of the models for different
surface conditions and sensor configurations have not been clearly assessed. A number of empirical and semi-empirical
models are studied in this paper to assess the applicability of the models for different conditions that are often found over
agricultural areas. The performance of the models is evaluated first analytically by comparing their simulations with those
obtained using the theoretical integral equation model (IEM) and geometrical optics model (GOM). The model estimations
are then compared with RADARSAT-1 observations acquired over an experimental catchment. The results show very
different model behaviour depending on the surfaces roughness conditions and incidence angle. This study highlights the
importance of carefully selecting the backscattering model to be used in radar applications.

Résumé. Plusieurs modèles empiriques et semi-empiriques de rétrodiffusion ont été proposés pour offrir des expressions
alternatives à l’inversion des paramètres de surface à partir des données radar. Cependant, l’applicabilité et la pertinence des
modèles aux différentes conditions de surface et configurations de capteurs n’ont pas été évaluées de façon satisfaisante.
Dans cet article, nous étudions un nombre de modèles empiriques et semi-empiriques en vue d’évaluer leur applicabilité aux
diverses conditions souvent observées en milieu agricole. La performance des modèles est évaluée tout d’abord de façon
analytique, c’est-à-dire en comparant leurs simulations avec celles obtenues avec les modèles théoriques IEM (« integral
equation model ») et GOM (« geometrical optics model »). Ensuite, les estimations des modèles sont comparées avec des
observations RADARSAT-1 acquises au-dessus d’un bassin versant expérimental. Les résultats montrent un comportement
très différent des modèles selon les conditions de rugosité de surface et l’angle d’incidence. Cette étude souligne
l’importance de bien sélectionner le modèle de rétrodiffusion à utiliser dans les applications radar.
[Traduit par la Rédaction]
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Surface soil moisture (SM) is a variable that plays a crucial
role in many processes occurring at the soil–atmosphere
interface. The knowledge of the moisture content of the soil
over a field or a catchment can be very helpful for hydrological,
agronomic, and meteorological applications (Schmugge et al.,
2002; Moran et al., 2004). However, soil moisture characterization
is a complicated task due to its high spatial and temporal
variability (Wilson et al., 2004). In addition, most soil moisture
measuring devices developed so far consist of point-based
probes. Therefore, estimating the moisture content of fields or
larger areas by means of remote sensing observations is at
present an attractive challenge.

Soil moisture sensing can best be approached using either
passive or active microwave sensors (Du et al., 2000;
Schmugge et al., 2002). However, passive sensors have a very
coarse spatial resolution and are thus limited to small-scale
applications. Consequently, active microwave (radar) sensors
represent the best alternative for hydrological and agronomic
applications. The backscattering coefficient, σ0, obtained from
radar sensors is directly related to the dielectric properties of
the soil surface being observed, which in turn are mainly
dependent on its moisture content (Ulaby et al., 1986).

Radar-based SM retrieval has been intensively studied in the
last decades. Three main approaches have been generally
followed (Moran et al., 2004): (i) empirical linear regression
models relating the backscattering coefficient to SM which are
valid for invariant roughness, vegetation, and scene-acquisition
conditions (Glenn and Carr, 2004; Álvarez-Mozos et al., 2005);
(ii) change detection techniques for monitoring SM dynamics,
assuming that surface roughness and vegetation cover change
more slowly than does SM (Wickel et al., 2001); and
(iii) electromagnetic scattering models that simulate the surface
backscattering process and can be inverted to retrieve SM
(Ulaby et al., 1986; Fung, 1994). The first two approaches have
limited validity because they require the surface characteristics
apart from SM to remain unchanged and the sensor parameters
to be exactly the same. If identical sensor parameters were
needed, the revisit time of most sensors would be on the order
of several weeks, which is generally insufficient for most
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hydrological and agronomic applications. Apart from that,
vegetation and surface roughness can change dramatically over
short time periods in agricultural areas. Therefore, it would
seem that the application of electromagnetic scattering models
is the most suitable approach for the estimation of SM for
hydrological and agronomic applications over agricultural
areas; however, this approach requires additional parameters,
such as roughness, for each image acquisition.

Several models have been proposed for bare soils or sparsely
vegetated surfaces. At present, the integral equation model
(IEM) (Fung, 1994) and the geometrical optics model (GOM)
(Ulaby et al., 1986) are the recommended and most frequently
used algorithms for soil moisture retrieval (Su et al., 1997; Sano
et al., 1998; Baghdadi et al., 2002a; Satalino et al., 2002; Mattia
et al., 2006). Both are physically based models. The former is
applicable to smooth or medium roughness conditions, and the
latter to rough or very rough surfaces. Consequently, both
models cover the range of roughness conditions that can be
expected over most agricultural surfaces. In addition, these
theoretical models have been validated against observations
acquired on experimental plots or laboratory settings, verifying
the adequacy of their predictions as long as their applicability
conditions are met (Fung, 1994; Mancini et al., 1999;
Macelloni et al., 2000).

The application of the IEM to natural conditions has so far
been problematic, however (Altese et al., 1996; Su et al., 1997;
Baghdadi et al., 2002b; Baghdadi and Zribi, 2006). The surface
roughness description implemented in the model requires three
roughness parameters (namely the standard deviation of
surface heights, s; the surface correlation length, l; and the
shape of the autocorrelation function, ACF); as a result, the
inversion of the soil moisture is markedly complicated at least
in the case of single-configuration observations, often leading
to an ill-posed problem (Shi et al., 1997; Leconte et al., 2004;
Loew and Mauser, 2006; Mattia et al., 2006). Furthermore, it
has been reported that an accurate field measurement of the
required roughness parameters, in particular l, is extremely
difficult to perform (Oh and Kay, 1998; Davidson et al., 2000;
Baghdadi et al., 2002b).

To overcome these limitations, many researchers highlighted
the necessity of multiconfiguration observations that would
substantially reduce the number of unknown variables and
therefore the dependency on roughness measurements (Bindlish
and Barros, 2000; McNairn and Brisco, 2004; Sahebi et al.,
2002). Others resorted to the inclusion of a priori information
on the roughness and moisture conditions expected to constrain
the range of possible solutions (Mattia et al., 2006). Another
approach has been to retrieve or invert roughness parameters
calibrated from a first radar scene (using soil moisture ground
measurements) and subsequently use those roughness parameters
calibrated on a multitemporal series of scenes (Su et al., 1997;
Walker et al., 2004; Baghdadi et al., 2002b; 2004; 2006).
Lastly, empirical and semi-empirical models have also been
proposed to offer alternative expressions for the inversion of
surface parameters.

The empirical models are based on experimental
scatterometer observations, whereas the semi-empirical models
consist of empirical fittings to the predictions of theoretical
models. Generally, both types of models are developed to offer
algorithms with a wider range of applicability and with
improved inversion capabilities, as they provide approximate
solutions that often require a single roughness parameter (Oh et
al., 1992; Dubois et al., 1995; Oh, 2004) or even none (Chen et
al., 1995). Empirical and semi-empirical models have been
applied with varied success (Wang et al., 1997; van Oevelen
and Hoekman, 1999; Leconte et al., 2004; Walker et al., 2004;
D’Urso and Minacapilli, 2006). Adequate results have often
been obtained after calibrating the roughness parameters
(Leconte et al., 2004; Walker et al., 2004; D’Urso and
Minacapilli, 2006); however, the applicability and adequacy of
the models to different surface conditions and sensor
configurations have not been clearly assessed, and a
comparative analysis of different models is required.

In a recent publication, Baghdadi and Zribi (2006) evaluated
the IEM and empirical models of Oh et al. (1992) and Dubois et
al. (1995) using a large database consisting of C-band synthetic
aperture radar (SAR) images (ERS-2, RADARSAT-1, and
ASAR) and ground measurements (soil moisture and
roughness). The results of this study revealed that the model of
Oh et al. correctly simulated the copolarization ratio (p) but
systematically overestimated the cross-polarization ratio (q)
and underestimated the backscattering coefficient for HV
polarization. On the other hand, the Dubois model faithfully
reproduced the radar signal for intermediate roughness
conditions and incidence angles θ ≤ 34°, whereas the model
performance was poor for smooth or rough surfaces and also
for small incidence angles. Lastly, the IEM overestimated the
backscatter for HH polarized observations, whereas for VV
polarization the overestimation was very small. Although the
evaluation of Baghdadi and Zribi provided interesting results,
further analyses need to be performed to fully assess the
performance of these models under varied conditions.

In this paper the empirical models of Oh et al. (1992) and
Dubois et al. (1995) and the semi-empirical models of Chen et
al. (1995), Shi et al. (1997), and Oh (2004) are studied. The
performance of these models is evaluated first analytically by
comparing their simulations with those obtained with
theoretical models; in this case the sensor configuration
considered is close to the optimum configuration for soil
moisture inversion (Ulaby et al., 1986; Biftu and Gan, 1999),
namely C-band frequency, HH polarization, and 20° incidence
angle. The model estimations are then compared with radar
observations acquired by RADARSAT-1 over an experimental
catchment of Navarre, northern Spain. The aim of the study is
to assess the applicability of the models on different conditions
often found over agricultural areas.

Backscattering models
The theoretical models used as a reference and the empirical

and semi-empirical models tested are briefly described in this
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section. For the sake of simplicity, the complete formulation of
the models is not included because they are well defined in the
literature.

Theoretical models

Integral equation model (IEM)
The IEM (Fung, 1994) is the theoretical backscattering

model with the widest range of applicability. The complete
version of the IEM is applicable over a full range of surface
roughness and frequency conditions, since it describes both the
single and multiple scattering components. However, in most
situations the multiple scattering component can be neglected
and the single scattering solution provides adequate results
(Fung, 1994). In addition, the single scattering solution is less
complex and easier to implement. Multiple scattering hardly
occurs on surfaces where ks < 3.0 and γ < 0.4, where k is the
wavenumber (cm–1), γ is the surface roughness slope, and s is
the standard deviation of the surface height (cm), so these
conditions restrict the applicability of the single scattering
solution to surfaces with smooth to moderate roughness
conditions.

The IEM calculates the backscattering coefficient from a soil
surface given the scene acquisition parameters (frequency,
incidence angle θ, and polarization), the dielectric constant of
the soil surface ε, and its roughness parameters, namely s, l, and
the ACF shape that over natural surfaces can be assumed to be
exponential. The model can be inverted to estimate the
dielectric constant, and hence the soil moisture, using
numerical methods.

Geometrical optics model (GOM)
The GOM represents the stationary phase solution of the

Kirchhoff models (KM). This solution is based on the
assumption that the coherent backscattering term is much
smaller than the noncoherent component and thus can be
neglected (Ulaby et al., 1986). These circumstances are usually
met on rough or very rough conditions occasionally found over
natural surfaces. The validity range of the GOM is restricted to
the following (Ulaby et al., 1986): (2ks cos θ) > 10 and l2 >
2.76λs (where k is expressed in cm–1, θ in degrees, and s, l, and λ
in cm). The GOM calculates the backscattering coefficient from
a surface given the scene acquisition parameters, ε, and the
roughness parameters (s, l, and ACF shape) of the soil surface.

Empirical models

The empirical models analyzed in this paper were both
developed based on ground-based scatterometer observations
acquired under a variety of roughness, moisture, and sensor
configurations.

Empirical model of Oh et al. (1992) (EMO)
The EMO was based on a set of experimental multipolarized

observations acquired at L-, C-, and X-band frequencies and
incidence angles ranging from 10° to 70°. The surface
roughness and soil moisture conditions of the experimental

sites covered the following ranges: 0.1 < ks < 6.0, 2.6 < kl <
19.7, and 0.09 < SM < 0.31 (where k is expressed in cm–1, s and
l in cm, and SM in cm3·cm–3). The EMO provides expressions
for the copolarization and cross-polarization ratios (p and q,
respectively) and also for the backscattering coefficients for
HH, VV, and HV polarizations. An important advantage of the
EMO is that it requires one single roughness parameter (s), and
hence it can be more easily inverted than other models.
Additionally, in cases where multipolarized observations are
available, the EMO can be used to invert both the dielectric
constant and s with no need for ground measurements.

The EMO does not include the coherent component of the
backscattering, so its application is not recommended over
smooth surfaces observed at incidence angles below 20°.

Empirical model of Dubois et al. (1995) (EMD)
The EMD was based on a set of experimental multipolarized

observations similar to those of the EMO, with L-, C-, and X-
band frequencies and incidence angles ranging from 10° to 70°.
The EMD provides expressions for the calculation of the
backscattering coefficient at HH and VV polarizations with the
following validity range: ks ≤2.5, θ ≥30, and SM < 0.35 (where k
is expressed in cm–1, s in cm, θ in degrees, and SM in cm3·cm–3).
The EMD provided good results when validated against
AIRSAR observations (Dubois et al., 1995) and independent
applications (Wang et al., 1997; Leconte et al., 2004).

Semi-empirical models

The practical application of empirical models can be
problematic due to the limited validity ranges within which
these models can be used. Therefore, some researchers
proposed backscattering models empirically fitted to
simulations obtained by theoretical models (mainly the IEM),
thus circumventing the site dependency of models based on
observations. Those models aim at providing simplified
solutions to the theoretical algorithms that can be more easily
applied and inverted.

Semi-empirical model of Chen et al. (1995) (SEMC)
The SEMC is based on the single scattering term of the IEM.

It is a multiple regression model fitted to a set of IEM
simulations. The SEMC provides an algorithm relating the
copolarization ratio of the backscattering coefficient, σHH / VV

0 ,
to the soil moisture, observation frequency, and incidence
angle. It does not require any roughness parameters because it
is based on the assumption that the copolarization ratio is not
dependent on the roughness of the observed surface. It is
applicable over the following conditions: 0.1 < s < 2.0, 1.0 < l <
15.0, 0.10 < SM < 0.40, 10 < θ < 50, and 1 < frequency < 10
(where s and l are expressed in cm, SM in cm3·cm–3, θ in
degrees, and frequency in GHz).

Semi-empirical model of Shi et al. (1997) (SEMS)
The SEMS was also derived from a regression analysis of

data generated by the single scattering term of the IEM. This
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model was developed to provide a straightforward algorithm
for application to SAR data. It requires only one roughness
parameter, SR, which is a combination of s and the surface
power spectrum W. It can best be inverted using copolarized
observations, since it then yields estimates of both the soil
moisture and the roughness parameter. Shi et al. (1997) also
provided the empirical coefficients to apply it to VV-polarized
observations, but not for the HH polarization. However, if
applied to single polarized observations, the roughness
parameter needs to be precisely estimated for an accurate soil
moisture inversion.

The algorithm was generated using data from only L-band
frequencies, whereas the incidence angle and surface parameter
ranges considered were broad: 0.2 < s < 3.6, 2.5 < l < 35.0,
0.02 < SM < 0.50, and 25 < θ < 70 (where s and l are expressed
in cm, SM in cm3·cm–3, and θ in degrees).

Semi-empirical model of Oh (2004) (SEMO)
The SEMO provides an inversion of the soil moisture from a

previous model (Oh et al., 2002), which was based on ground-
based scatterometer observations while agreeing with
theoretical model simulations (Oh, 2004). To facilitate the
inversion, the SEMO introduces a new equation for the cross-
polarized ratio that does not depend on the correlation length l.
Therefore, the model requires only the roughness parameter (s)
and can be easily inverted using multipolarized observations.
The validity conditions of the SEMO cover the following
ranges: 0.13 < ks < 3.5, 0.04 < SM < 0.29, and 10 < θ < 70
(where k is expressed in cm–1, s in cm, SM in cm3·cm–3, and θ in
degrees). The model was successfully applied to airborne
multipolarized SAR observations. Moreover, the accuracy of
the results improved when multiple frequency observations
were used and their inverted SM and s values averaged.

Analytical evaluation
The backscattering models selected were first analytically

evaluated comparing their simulations with reference
estimations predicted by theoretical models. The analytical
evaluation was performed in two steps. First, the sensitivity of
each model to the main variables influencing the backscatter
was analyzed and compared to the behaviour of the IEM. The
variables studied were the incidence angle θ, the soil moisture
SM, and the standard deviation of surface heights s. Next,
different scenarios concerning the roughness of the soil surface
and the incidence angle were considered and the discrepancy
between each model and the reference theoretical model was
computed through the root mean square error, rmse (in dB), of
the backscatter estimated over a full range of soil moisture
conditions.

In the first analysis, the sensor configuration considered
corresponded to C-band frequency and HH polarization, which
combined with small incidence angles provided an adequate
configuration for soil moisture sensing (Ulaby et al., 1986;
Biftu and Gan, 1999). First, the sensitivity of the backscatter to
the incidence angle was studied assuming average surface

roughness and soil moisture conditions, i.e., s = 1.0 cm, l =
6.0 cm, and SM = 0.25 cm3·cm–3 (ε ≈ 12), and an incidence
angle range from 10° to 50°. Next, the sensitivity of the
backscatter to the soil moisture was analyzed considering a
moisture range from 0.025 to 0.50 cm3·cm–3 (approximately
from ε = 3 to ε = 29), an incidence angle of 30°, and keeping the
same average roughness conditions. Lastly, the influence of the
roughness parameter s on the backscatter was analyzed
considering a range from 0.5 cm to 3.0 cm and assuming
average incidence angle (θ = 30°), soil moisture (SM =
0.25 cm3·cm–3), and correlation length values (l = 6.0 cm).

The reference simulations obtained with the IEM showed
that, in the case of the incidence angle, a typical decreasing
trend was frequently documented (Ulaby et al., 1986; Fung,
1994; Mancini et al., 1999). The sensitivity of the backscatter to
the soil moisture decreased as the soil got wetter. Lastly, the
sensitivity of the backscatter to s was more complex, as it first
increased up to a certain value after which the backscattering
coefficient adopted a decreasing trend.

Figure 1 summarizes the results of this first analysis. The
EMO predicted a decreasing trend as the incidence angle
increased, although at low incidence angles the backscatter was
severely underestimated (Figure 1a). The sensitivity to SM
was generally correctly reproduced with the EMO (Figure 1b),
although an offset was observed. Lastly, the EMO predicted an
asymptotical increase in backscatter as s got larger, which was
not consistent with the IEM trend (Figure 1c).

In the case of the EMD, the decrease in backscatter appeared
to be too steep (Figure 1d). However, the validity range of the
EMD is a priori restricted to θ ≤ 30°, and over that range the
decreasing trend was similar to that of the IEM. On the other
hand, the EMD predicted a higher sensitivity to SM at humid
conditions, in contrast to the IEM trend (Figure 1e). The
influence of s on the backscatter followed an asymptotical
increase as in the case of the EMO (Figure 1f).

The SEMC calculates the copolarization ratio σHH / VV
0 , and

thus in this case the comparison was made against σHH / VV
0

simulations obtained with the IEM (Figures 1g–1i).
According to the IEM, the copolarization ratio decreased
slightly as the incidence angle increased. This tendency to
decrease was correctly reproduced by a simplified linear trend
on the SEMC curve, although a large offset existed between
the SEMC and the IEM curve (Figure 1g). The sensitivity of
the copolarization ratio to SM was represented by the IEM
with a slightly decreasing trend (2 dB on a full soil moisture
range), whereas the SEMC predicted a sharp fall (from
approximately +20 dB to –12 dB) (Figure 1h). Lastly,
although the SEMC was based on the assumption that the
copolarization ratio was not affected by the roughness of the
soil surface, the IEM described an ascending trend in the
copolarization ratio as s increased.

The results obtained with the SEMS were compared against
IEM simulations for VV polarization. The sensitivity to the
incidence angle was correctly reproduced by the SEMS at small
and medium incidence angles (Figure 1j). At large incidence
angles (>45°) an unrealistic sharp fall was predicted by the
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Figure 1. Sensitivity of the studied models EMO (a, b, and c), EMD (d, e, and f), SEMC (g, h, and i), SEMS (j, k,
and l), and SEMO (m, n, and o) to the incidence angle θ, soil moisture SM, and standard deviation of heights s as
compared with that of the IEM.



SEMS. The sensitivity to SM was also adequately described,
thus the IEM trend was closely reproduced by the SEMS
(Figure 1k). On the other hand, the influence of s was
described by an increasing asymptotic trend that did not agree
with the IEM at medium and rough conditions (Figure 1l).

Ultimately, the SEMO correctly described the trend of a
decrease in backscatter with an increase in incidence angle over
the full incidence angle range (Figure 1m). An underestimation
of approximately 2 dB was observed. The influence of SM was
also correctly described, apart from an offset of 2 dB. The
influence of s followed a trend similar to that of the EMO,
however, with an asymptotically increasing shape.

The second analytical evaluation consisted of computing the
rmse of the backscatter estimated over different scenarios
concerning the roughness of the soil surface and the incidence
angle. Three roughness conditions were considered which are
representative of most of the roughness classes found on
agricultural surfaces (Álvarez-Mozos et al., 2006): (i) smooth
conditions (s = 0.7 cm and l = 2.5 cm) representing seedbed or
compacted agricultural surfaces, (ii) medium surfaces (s =
1.5 cm and l = 4.0 cm) representative of harrowed or disk-
ploughed surfaces, and (iii) rough surfaces (s = 3.0 cm and l =
7.0 cm) corresponding to mouldboard-ploughed or deeply
harrowed surfaces. For the first two roughness classes, the IEM
was used as the reference theoretical backscattering model. The
latter was out of the applicability range of the IEM, so the GOM
was used as a reference in that case.

Two incidence angle configurations were selected, namely
θ = 20° and θ = 40°, which represented the limits of the standard
incidence angle range of most SAR sensors, i.e., ENVISAT–
ASAR, RADARSAT-1, RADARSAT-2, ALOS–PALSAR, and
TERRASAR. The small incidence angle configuration is a
priori best suited for soil moisture retrieval. However, some of
the models studied are not applicable at small incidence
angles.

The results obtained are summarized in Table 1 and Figure 2.
The EMO showed a better agreement with reference models
over rough conditions with rmse values of 1 dB or less. The
agreement was poor at small incidence angles, especially for
smooth surfaces. The reason for this lack of agreement can be
explained in that under these conditions an important proportion

of the backscatter comes from the coherent scattering component,
which is not represented in the EMO. Boisvert et al. (1997) also
observed an underestimation of the HH backscattering
coefficient calculated with the EMO. On the other hand,
Baghdadi and Zribi (2006) did not evaluate the HH backscatter
simulations of the EMO, but they observed a correct simulation
of the copolarization ratio (p), an overestimation of the cross-
polarization ratio (q), and an underestimation of the backscattering
coefficient for the HV polarization.

At an incidence angle of 40°, the EMD yielded better results
as surfaces became rougher, with rmse values decreasing from
4 dB to 1 dB (Table 1; Figure 2). Although rmse values were
1.47 dB at 20° and smooth conditions, they were much higher
at medium and rough conditions. The applicability of the EMD
at low incidence angles is indeed not recommended.

The SEMC yielded rmse values over 7 dB in all cases
(Table 1; Figure 2). The lack of agreement observed could be
due to the fact that the SEMC was developed considering
roughness parameters corresponding to very smooth surfaces,
which are unusual on natural surfaces.

The SEMS provided good agreement with the IEM when
applied to smooth surfaces, particularly when observed at large
incidence angles (Table 1; Figure 2). However, at medium and
rough surfaces the rmse values increased dramatically, especially
at an incidence angle of 20°.

Lastly, the SEMO yielded lower rmse values on the
simulations performed at a 40° incidence angle than on those at
20° (Table 1; Figure 2). In addition, at an incidence angle of
40° the agreement improved as the surface became rougher. On
the other hand, at an incidence angle of 20° the agreement was
moderate (<2.5 dB) over smooth and rough conditions, whereas
it was poor over medium roughness conditions.

Experimental evaluation
Research site

The experimental study was carried out over a small
agricultural watershed located in the Spanish region of Navarre
called La Tejería (Figure 3). This watershed is part of the
Experimental Agricultural Watershed Network of Navarre

Canadian Journal of Remote Sensing / Journal canadien de télédétection
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Root mean square error (rmse, dB)

Roughness class θ (°) EMO EMD SEMC SEMS SEMO

Smooth (s = 0.7 cm, l = 2.5 cm) 20 4.61 1.47 8.12 1.50 2.39
40 2.20 4.41 7.49 0.36 2.10

Medium (s = 1.5 cm, l = 4.0 cm) 20 2.59 7.53 8.34 10.66 4.53
40 1.42 3.27 8.57 5.33 1.72

Rough (s = 3.0 cm, l = 7.0 cm) 20 0.52 7.61 8.60 10.22 2.41
40 1.09 1.00 9.34 7.98 0.41

Note: Three roughness classes and two incidence angle (θ) configurations are considered. IEM is used as
reference except for the “rough” roughness class where the GOM is used instead.

Table 1. Root mean square error computed between each model and the reference theoretical
model.



created in 1993 (Casalí et al.2). The watershed covers
approximately 160 ha and has homogeneous slopes of about
12%. The climate is humid submediterranean, and soils have
clayey textures and are approximately 1 m thick. The
watershed is devoted to agriculture and is almost completely

cultivated. During the experimental period (February–April
2003), an emerging cereal crop covered most of the fields of La
Tejería watershed, except for one ploughed field and four other
fields where vegetable crops had been sown by scattering the
seed over previously rolled soils (classified as “rolled
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Figure 3. Location map, digital elevation map (DEM), and land use map of La Tejería experimental catchment.

Figure 2. Results obtained from the analytical evaluation. Root mean square errors (rmse) calculated between EMO, EMD, SEMC, SEMS,
and SEMO predictions and those of the reference models. Two incidence angles and three surface roughness conditions are considered.

2 J. Casalí, R. Gastesi, J. Alvarez-Mozos, L.M. De Santisteban, J. Del Valle De Lersundi, M. Goñi, and M.A. Campo. Runoff, erosion and
water quality of agricultural watersheds in central Navarre (Spain). CATENA. In preparation.



vegetables”). The cereal fields that had been rolled after
sowing, and therefore had a smoother surface, were grouped in
a separate crop class called “rolled cereal”.

Soil moisture and surface roughness measurements were
performed during the experimental period. Surface soil
moisture was measured coinciding with image acquisition
dates with a calibrated portable time-domain reflectometry
(TDR) probe (TRIME-FM3, IMKO GmBH) to provide mean
moisture values at 16 control fields and at the catchment scale.
The TDR probe consists of three rods with a length of 16 cm. In
the present study the probe was inserted with an inclination of
50° to provide the moisture content of the top 10 cm of the soil.
Generally, it can be assumed that the soil depth sensed with C-
band radar observations varies between 1 and 10 cm depending
on the moisture content (Ulaby et al., 1986). Over each control
field the soil moisture has been monitored at a minimum of
three sampling sites distributed throughout the field, and three
TDR readings were acquired at each sampling site. To obtain
representative catchment average SM values, a total of 60
sampling sites (three TDR measurements were also acquired at
each site) were monitored on each image acquisition date.
These sampling sites were selected following a stratified
random sampling scheme taking into account the existing crop
and soil classification. Average catchment SM values were
calculated through a weighted mean. The SM values observed
reflected rainfall patterns and ranged approximately from 0.15
to 0.45 cm3·cm–3 (Figure 4).

Surface roughness was measured using a 1 m long needle
profiler to provide reference roughness parameters (i.e., s and l
values) for each tillage class (Table 2). Several profiles were
acquired for each tillage class. Profiles were collected parallel
and perpendicular to the tillage row direction because no clear
row pattern was evident, except for the “ploughed” class where
only parallel profiles were processed. Roughness was
considered to be invariant in time because no tillage was
performed in the experiment period and the intensity of the
precipitation events observed was low. The catchment average
roughness parameters were s = 1.00 cm and l = 3.47 cm, with
standard deviations of 0.13 cm and 2.87 cm, respectively. The
catchment average s value was calculated as the weighted
average of the different classes, and the average l value was
derived from the average autocorrelation function of the
different classes.

Radar scenes

Five RADARSAT-1 SAR-georeferenced fine resolution (SGF)
scenes were acquired over the Navarre region during the spring
of 2003. The scenes were acquired in a period of approximately
1 month (27 February – 2 April 2003). Beam modes S1 and S2
were selected for their lower incidence angles, on average 23.5°
and 27.5°, respectively. The RADARSAT-1 configuration (C-
band and HH polarization), at low incidence angles, has proved
to be particularly well suited for SM research over cereal
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Figure 4. Ground measured soil moisture data (in boxplots) at La Tejería watershed during the
experimental campaign and the rainfall distribution (bars). Dates are given in day–month–year
format.



canopies where vertically polarized waves are more intensively
attenuated (Mattia et al., 2003).

Scenes were processed following standard procedures.
Calibration was carried out following the approach of Shepherd
(2000) and taking into account the topography in the
calculation of the local incidence angle (Ulander, 1996).
Speckle was reduced applying a 7 × 7 GammaMAP filter
(Lopes et al., 1990), and scenes were geocoded following the
standard ground control point approach (the accuracy was
rmse ≤ 1 pixel) (Figure 5). The influence of the emerging
cereal cover on the backscattering coefficient was corrected by
means of the semi-empirical “water cloud” model (Attema and
Ulaby, 1978). For this correction, it was assumed that the cereal
canopy only influenced the backscatter by attenuating the radar
signal. In addition, the canopy attenuation (loss factor) was
assumed to depend only on the canopy moisture content, MV
(in kg·m–2), which was estimated using some reference ground
measurements and a Landsat-7 enhanced thematic mapper plus
(ETM+) derived normalized difference vegetation index
(NDVI) image (further details in Álvarez-Mozos et al., 2006).
Lastly, field average backscattering values were computed.

Experimental results

RADARSAT-1 σ0 observations were compared against
model simulations at the field and catchment scales. The SEMC
requires backscattering observations at both HH and VV
polarizations, and therefore, given that only RADARSAT-1 HH
observations were available, this model could not be tested
using experimental data. Additionally, the SEMS could not be
applied because this model requires VV-polarized observations
or VV- and HH-polarized observations. The empirical
coefficients a and b required for the calculation of the
backscattering coefficient σ0 at HH polarization have not yet
been published. The experimental evaluation thus focused on
the EMO, EMD, and SEMO.

The differences between IEM results and RADARSAT-1
observations are discussed first. At the field scale, IEM
simulations showed a reasonable agreement with RADARSAT-1
observations (Figure 6). The dispersion and discrepancies
between observed and estimated backscatter (e.g., Figure 6a)
can be at least partially attributed to the inherent variability of
surface roughness and the difficulties related to its measurement.
The consequences of roughness measurement inaccuracies are
even more critical on smooth surfaces (Figures 6b, 6c) because

of the higher sensitivity of the backscatter to the roughness
parameters at low s and l values. The influence of roughness
variability is reduced when moving to the catchment scale,
where the agreement between IEM results and observations
improves.

Most of the fields in La Tejería belonged to the “cereal”
tillage class. The backscatter values estimated with the IEM for
those fields showed a reasonable agreement with the
observations, although an overestimation was observed at low
backscatter values (low moisture conditions) (Figure 6a). The
EMO and EMD consistently underestimated the backscatter.
The former predicted a trend similar to that of the IEM but
approximately 2–3 dB lower, especially at moist conditions,
whereas the latter showed a greater dispersion and normally
underestimated the backscattering coefficient by as much as 3–
4 dB. On the other hand, the SEMO predictions followed the
observations closely, particularly at moist conditions, whereas
over dryer situations an overestimation of around 2–3 dB was
noticed, similar to that of the IEM (Figure 6a).

Rolled cereal fields had a smoother surface. In those fields
the IEM forecasted backscatter values 2–4 dB higher than the
observed values (Figure 6b). The SEMO estimations, however,
showed a close agreement with the observations which became
slightly worse in dry conditions. As expected, the EMO and
EMD underestimated the backscatter values to a greater extent
over rolled cereal fields than over cereal fields (Figure 6b).
This underestimation was also more evident over fields
belonging to the class “rolled vegetables”, which showed very
smooth conditions (Figure 6c). In those fields, the IEM
simulations also showed a poor agreement with the
observations. The large sensitivity of the backscattering
coefficient to s in smooth conditions is the reason why small
inaccuracies in the determination of s cause significant errors in
the prediction of backscatter.

Lastly, the analysis of the ploughed class was limited
because there was only one field belonging to this class. Due to
the rougher conditions, the GOM was used instead of the IEM.
The GOM predictions followed the observations, although a
constant overestimation of around 2 dB was noticed (Figure 6d).
The EMO showed a behaviour very similar to that of the GOM,
as could be expected from the analytical evaluation performed.
Conversely, the EMD and SEMO largely overestimated the
backscatter over the entire moisture range (Figure 6d).

At the catchment scale, models behaved similarly to the case
of the cereal fields (Figure 7). The IEM and SEMO showed
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Standard deviation of the
surface height, s (cm)

Surface correlation
length, l (cm)

Class
Total area
(ha)

No. of
profiles Average

Standard
deviation Average

Standard
deviation

Rolled vegetables 10.35 16 0.47 0.09 2.44 2.84
Rolled cereal 17.95 20 0.89 0.27 3.62 3.26
Cereal 126.27 48 1.05 0.34 3.49 2.63
Ploughed 1.77 4 2.57 0.72 7.41 2.35

Table 2. Measured roughness parameters for each tillage class.



close agreement with the observations. The EMO and EMD
underestimated the backscattering coefficient by several
decibels, particularly in moist conditions.

The results plotted were analyzed computing the root mean
square error rmse between the observations and model
simulations (Table 3). The IEM yielded, on average, the
smallest rmse values, although smooth fields showed poorer
results (rmse = 2.44 dB in the rolled vegetables class). The
SEMO produced accurate results at the field scale, with rmse

values of around 1 dB in the cereal and rolled cereal fields, as
well as at the catchment scale. The SEMO yielded large errors
over very rough conditions (rmse = 4.96 dB), but those results
were not very representative because data from only one field
with significant roughness were analyzed. The EMO generally
underestimated the backscatter, particularly over smooth
surfaces and in moist conditions (rmse = 5.54 dB in the rolled
vegetables class); at the catchment scale this model produced
an rmse of around 2 dB. Lastly, the EMD yielded, on average,
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Figure 5. RADARSAT-1 scenes acquired over La Tejería experimental catchment. Scenes are
already processed and calibrated: (a) 27 February 2003; (b) 6 March 2003; (c) 23 March 2003;
(d) 30 March 2003; and (e) 2 April 2003.



the largest rmse values. In addition, it underestimated the
backscatter over the smooth surfaces and overestimated it over
the rough surfaces. These results are in agreement with those
obtained by Baghdadi and Zribi (2006). Therefore, the use of
the EMD at incidence angles below 30° is not recommended.

Concluding remarks
The present study compared the behaviour of several

empirical and semi-empirical backscattering models against
theoretical models and RADARSAT-1 observations. The
objective of this research was to identify the conditions where
each model could best be applied. Both evaluations (analytical
and experimental) are complementary and the results normally
agree, but some models could not be experimentally evaluated
because they were not applicable to the sensor configuration of
RADARSAT-1.

The empirical model of Oh et al. (1992) did not show
adequate experimental results over fields with smooth and
medium roughness conditions, particularly when observed at
small incidence angles. Under these conditions, backscatter
was underestimated by as much as 5 dB, in particular when
backscatter was estimated under wet soil conditions.
Conversely, the empirical model of Oh et al. accurately

estimated backscatter for rough surfaces. This finding is in
accordance with the results of the analytical evaluation.

The analytical results showed that the empirical model of
Dubois et al. (1995) yielded better results at large incidence
angles. This finding was corroborated by the experimental
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Figure 6. Model-estimated σ0 values versus RADARSAT-1 observations at the field scale. Fields are plotted grouped
according to their tillage class: (a) cereal, (b) rolled cereal, (c) rolled vegetables, and (d) ploughed.

Figure 7. Model-estimated σ0 values versus RADARSAT-1
observations at the catchment scale.



evaluation where the Dubois et al. model showed a strong
disagreement with RADARSAT-1 observations acquired at
low incidence angles. On the other hand, the sensitivity of the
backscattering coefficient to soil moisture was not realistically
reproduced by this model, since it predicted an increasing
sensitivity as the soil moisture content increased, which was
contrary to theoretical predictions and experimental evidence.

The semi-empirical model of Chen et al. (1995) did not
compare satisfactorily with theoretical models. The analytical
evaluation showed large discrepancies over different incidence
angles and roughness conditions. Furthermore, the main
assumption underlying the model (the independency of the
copolarization ratio σHH / VV

0 on surface roughness) did not hold
for the conditions considered.

The analytical evaluation of the semi-empirical model of Shi
et al. (1997) showed good results over smooth conditions and
incidence angles up to 40°. The results were poor over medium
and rough conditions. However, if applied to observations
acquired in L-band frequency (or lower), the applicable
roughness conditions broaden significantly. In addition, the
possibility of simplifying the roughness parameter if copolarized
observations are available is attractive, and this could be done
in the case of ALOS/PALSAR observations (L-band,
multipolarized observations).

Lastly, the semi-empirical model of Oh (2004) also provided
accurate results. The analytical evaluation showed that at large
incidence angles (40°) the results improved as the surface
became rougher. In addition, over smooth surfaces and low
incidence angles the results were adequate and compared
satisfactorily with experimental observations on conventional
cereal fields. This model has the additional advantage of
requiring only one roughness parameter, facilitating the
inversion of soil moisture.
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